A Meyer-Itô formula for stable processes via fractional calculus

نویسندگان

چکیده

Abstract The infinitesimal generator of a one-dimensional strictly $$\alpha $$ α -stable process can be represented as weighted sum (right and left) Riemann-Liouville fractional derivatives order one obtains the Laplacian in case symmetric stable processes. Using this relationship, we compute inverse on Lizorkin space, from which recover potential if \in (0,1)$$ ∈ ( 0 , 1 ) recurrent (1,2)$$ 2 . is expressed terms linear combination integrals One then state class functions that give semimartingales when applied to processes Meyer-Itô theorem with non-zero (occupational) local time term, providing generalization Tanaka formula given by Tsukada [1]. This result used find Doob-Meyer (or semimartingale) decomposition for $$|X_t - x|^{\gamma }$$ | X t - x γ X index $$\gamma (\alpha -1,\alpha )$$ , generalizing work Engelbert Kurenok [2] asymmetric case.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Itô Formula for an Accretive Operator

We give an Itô formula associated to a non-linear semi-group associated to a m-accretive operator.

متن کامل

Calculus on Fock space and a non - adapted quantum Itô formula

Nicolas Privault Abstract The aim of this note is to introduce a calculus on Fock space with its probabilistic interpretations, and to give a detailed presentation of the associated quantum Itô formula. Calcul sur l’espace de Fock et une formule d’Itô non-commutative anticipante Résumé Le but de cette note est d’introduire un calcul sur l’espace de Fock et de donner une présentation détaillée d...

متن کامل

Small deviations for fractional stable processes

Let {Rt, 0 ≤ t ≤ 1} be a symmetric α-stable Riemann-Liouville process with Hurst parameterH > 0. Consider a translation invariant, β-self-similar, and p-pseudo-additive functional semi-norm ||.||. We show that if H > β+1/p and γ = (H − β− 1/p), then lim ε↓0 ε logP [||R|| ≤ ε] = −K ∈ [−∞, 0), with K finite in the Gaussian case α = 2. If α < 2, we prove that K is finite when R is continuous and H...

متن کامل

Fractional transport equations for Lévy stable processes.

The influence functional method of Feynman and Vernon is used to obtain a quantum master equation for a system subjected to a Lévy stable random force. The corresponding classical transport equations for the Wigner function are then derived, both in the limits of weak and strong friction. These are fractional extensions of the Klein-Kramers and the Smoluchowski equations. It is shown that the f...

متن کامل

Rough Path Analysis Via Fractional Calculus

Using fractional calculus we define integrals of the form ∫ b a f(xt)dyt, where x and y are vector-valued Hölder continuous functions of order β ∈ ( 1 3 , 1 2 ) and f is a continuously differentiable function such that f ′ is λ-Höldr continuous for some λ > 1 β − 2. Under some further smooth conditions on f the integral is a continuous functional of x, y, and the tensor product x ⊗ y with respe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractional Calculus and Applied Analysis

سال: 2023

ISSN: ['1311-0454', '1314-2224']

DOI: https://doi.org/10.1007/s13540-023-00139-2